Cardiovascular response to hypoxia after endurance training at altitude and sea level and after detraining.

نویسندگان

  • K Katayama
  • Y Sato
  • Y Morotome
  • N Shima
  • K Ishida
  • S Mori
  • M Miyamura
چکیده

The purpose of this study was to elucidate 1) the effects of endurance exercise training during hypoxia or normoxia and of detraining on ventilatory and cardiovascular responses to progressive isocapnic hypoxia and 2) whether the change in the cardiovascular response to hypoxia is correlated to changes in the hypoxic ventilatory response (HVR) after training and detraining. Seven men (altitude group) performed endurance training using a cycle ergometer in a hypobaric chamber of simulated 4,500 m, whereas the other seven men (sea-level group) trained at sea level (K. Katayama, Y. Sato, Y. Morotome, N. Shima, K. Ishida, S. Mori, and M. Miyamura. J. Appl. Physiol. 86: 1805-1811, 1999). The HVR, systolic and diastolic blood pressure responses (DeltaSBP/DeltaSa(O(2)), DeltaDBP/DeltaSa(O(2))), and heart rate response (DeltaHR/DeltaSa(O(2)); Sa(O(2)) is arterial oxygen saturation) to progressive isocapnic hypoxia were measured before and after training and during detraining. DeltaSBP/DeltaSa(O(2)) increased significantly in the altitude group and decreased significantly in the sea-level group after training. The changed DeltaSBP/DeltaSa(O(2)) in both groups was restored during 2 wk of detraining, as were the changes in HVR, whereas there were no changes in the DeltaDBP/DeltaSa(O(2)) and DeltaHR/DeltaSa(O(2)) throughout the experimental period. The changes in DeltaSBP/DeltaSa(O(2)) after training and detraining were significantly correlated with those in HVR. These results suggest that DeltaSBP/DeltaSa(O(2)) to progressive isocapnic hypoxia is variable after endurance training during hypoxia and normoxia and after detraining, as is HVR, but DeltaDBP/DeltaSa(O(2)) and DeltaHR/DeltaSa(O(2)) are not. It also suggests that there is an interaction between the changes in DeltaSBP/DeltaSa(O(2)) and HVR after endurance training or detraining.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ventilatory chemosensitive adaptations to intermittent hypoxic exposure with endurance training and detraining.

The present study was performed to clarify the effects of intermittent exposure to an altitude of 4,500 m with endurance training and detraining on ventilatory chemosensitivity. Seven subjects (sea-level group) trained at sea level at 70% maximal oxygen uptake (VO2 max) for 30 min/day, 5 days/wk for 2 wk, whereas the other seven subjects (altitude group) trained at the same relative intensity (...

متن کامل

Physiological implications of altitude training for endurance performance at sea level: a review.

Acclimatisation to environmental hypoxia initiates a series of metabolic and musculocardio-respiratory adaptations that influence oxygen transport and utilisation, or better still, being born and raised at altitude, is necessary to achieve optimal physical performance at altitude, scientific evidence to support the potentiating effects after return to sea level is at present equivocal. Despite ...

متن کامل

Training Diaries during Altitude Training Camp in Two Olympic Champions: An Observational Case Study.

Traditionally, Live High-Train High (LHTH) interventions were adopted when athletes trained and lived at altitude to try maximising the benefits offered by hypoxic exposure and improving sea level performance. Nevertheless, scientific research has proposed that the possible benefits of hypoxia would be offset by the inability to maintain high training intensity at altitude. However, elite athle...

متن کامل

A three-week traditional altitude training increases hemoglobin mass and red cell volume in elite biathlon athletes.

It is well known that altitude training stimulates erythropoiesis, but only few data are available concerning the direct altitude effect on red blood cell volume (RCV) in world class endurance athletes during exposure to continued hypoxia. The purpose of this study was to evaluate the impact of three weeks of traditional altitude training at 2050 m on total hemoglobin mass (tHb), RCV and erythr...

متن کامل

Intermittent hypoxia improves endurance performance and submaximal exercise efficiency.

The purpose of the present study was to elucidate the influence of intermittent hypobaric hypoxia at rest on endurance performance and cardiorespiratory and hematological adaptations in trained endurance athletes. Twelve trained male endurance runners were assigned to either a hypoxic group (n = 6) or a control group (n = 6). The subjects in the hypoxic group were exposed to a simulated altitud...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of applied physiology

دوره 88 4  شماره 

صفحات  -

تاریخ انتشار 2000